
CODEBREAKERCHALLENGE 2.0

Fall 2014

1

Challenge Scenario

Ȱ!Î international terrorist organization has recently
revised the operational security (OPSEC) procedures
used to communicate with their members in the field.

We have recovered a program that we believe is
being used to covertly send encrypted messages. On
the surface, the program appears to simply check the
weather forecast in a few cities, but we believe there

is more to the program than meets the eye. Your
mission is to figure out how to execute the covert

functionality, reverse-engineer the encryption
algorithm, create a decryption program, and lastly
figure out a way to decipher a message that was

captured from a high-value targetȢȱ

2

The Challenge

ÁThere are 4 different levels or "tiers" to this
challenge problem

ĞTier 1: Determine how to execute the hidden
functionality

ĞTier 2: Bypass an authentication check

ĞTier 3: Create a decryption program

ĞTier 4: Decrypt message from a high-value target

ÁEach tier gets progressively harder and builds
off lower tiers

3

The Challenge (cont.)

ÁThe program will provide you with directions
for where to send an encrypted email after
you complete Tier 3

ĞPlease use your *.eduaddress so we know you are
a student

ĞYou will then be sent the encrypted message for
Tier 4

ÁSolutions are due by the end of 2014

4

Getting Started

Á2ÅÖÉÅ× ÔÈÅ Ȭ'ÅÔÔÉÎÇ 3ÔÁÒÔÅÄȭ ÔÉÐÓ ÉÎ ÔÈÅ
CodebreakerChallenge document

ÁDownload the IDA Demo from Hex-Rays

Ğhttps://www.hex-
rays.com/products/ida/support/download_demo.h
tml

ÁTry running the program with different
options and observe its behavior

ÁDisassemble and start analyzing the binary

5

https://www.hex-rays.com/products/ida/support/download_demo.html

Reverse Engineering Tips

ÁExamine strings in the binary using IDA
ĞLook for clues that relate to the functionality you are trying

to find / reverse
ĞUtilize IDA xrefsto find code that references the string(s) of

interest
ĞUtilize symbols (e.g., function names) to help determine

what a section of code does

ÁTry setting debugger breakpoints to help RE code
ĞSingle-step after hitting a breakpoint and see how the

values in registers/memory change
ĞLook for the result of interesting computations. You can

sometimes get the data you need from memory

ÁLeverage online resources, e.g.,Intelmanuals, RE
lectures, etc. for help on reverse-engineering

6

Reverse Engineering Tips

ÁOptimizing compilers sometimes generate
strange looking code for simple operations

ÁIn this challenge, you will encounter one such
optimization during Tiers 2 ɀ4

ÁTo save you some time/frustration, we will
walk through an example and explain the
math behind the optimization

7

What does this code do?

mov edx, 0xAC769185// edx= 0xAC769185

mov eax, ecx // ecx= input value

imul edx // edx:eax= eax* edx

lea eax, [edx+ ecx*0x1]// eax= edx+ ecx

mov edx, eax // edx= eax

saredx, 0x6 // arith right shift; edx= edx>> 0x6

mov eax, ecx // eax= ecx

sareax, 0x1f // eax= eax>> 0x1f (31)

mov ebx, edx // ebx= edx

sub ebx, eax // ebx= ebx- eax

mov eax, ebx // eax= ebx

imul eax, eax, 0x5f // edx:eax= eax* 0x5f (95)

mov edx, ecx // edx= ecx

sub edx, eax // edx= edxɀeax

// edxis the final result

8

Signed Division and Remainder

ÁThe code computes: edx= ecx% 95

ÁWhy multiply by 0xAC769185 and where did that
number come from?
ĞDivision is a time consuming operation

ĞWhen the divisor is a constant, the compiler can
optimize the computation

Á4ÈÅ ÂÁÓÉÃ ÔÒÉÃË ÉÓ ÔÏ ÍÕÌÔÉÐÌÙ ÂÙ Á ȰÍÁÇÉÃ ÖÁÌÕÅȱ
(~ 232/d) and extract the leftmost 32 bits of the
product

ÁThe following site computes these numbers for
you: http://www.hackersdelight.org/magic.htm

9

http://www.hackersdelight.org/magic.htm

Signed Division and Remainder

ÁFor wordsizeW σand divisor d, 2 d
ς , we wish to find the least integer m and
p such that:

= for 0 n ς (1a)

ρ= for ς n ρ(1b)

with 0 m ς and p ὡ

10

Signed Division and Remainder

Á4ÈÅ ȰÍÁÇÉÃ ÎÕÍÂÅÒȱ M used in the multiply
instruction is given by:

ὓ
άȟ ὭὪπ ά ς

ά ς ȟὭὪς ά ς

ÁBecause (1b) must hold for ὲ Ὠȟ

ρ ρȟwhich implies

ρ (2)

11

Signed Division and Remainder

ÁLet ὲ be the largest value of n such that
rem(ὲ, d) = d-1. It can be calculated from:

ὲ
ς

Ὠ
Äz ρ

ς ὶὩάς ȟὨ ρ σ

ÁBecause (1a) must hold for ὲ ὲ:

or

(4)

12

Signed Division and Remainder

ÁCombining (4) with (2) gives:

ά (5)

ÁBecause ά is to be the least integer satisfying

(5), it is the next integer greater than :

ά
ȟ

ρ (6)

ς ὲ Ὠ ὶὩάςȟὨ (7)

13

Signed Division and Remainder

ÁAlgorithm to find ὓand shift amount ίfrom Ὠ

ĞCompute ὲusing (3)

ĞSolve for ὴby trying successively larger values,
starting at ὡ, until satisfying the inequality in (7)

ĞWhen the smallest ὴ ὡ satisfying (7) is found,
άis calculated from (6)

ĞThe shift amount is computed as: ί ὴ ὡ

Ğὓ is simply a reinterpretation of άas a signed
integer

14

64- bit Data Types

Consider the following program:

int main(){

charone = 0x11; // sizeof(char) == 1

chartwo = 0x22;

int three = 0x33333333; // sizeof(int) == 4

int four = 0x44444444;

long longfive = 0x5555555555555555; // sizeof(long long) == 8

long longsix = 0x6666666666666666;

printf("8b: %hu32b: %u64b: %llu\n", one + two, three + four, five + six);

return 0;

}

15

64- bit Data Types Ƶx86_64

Part 1: Move values onto the stack

mov BYTE PTR [rbp-0x2],0x11

mov BYTE PTR [rbp-0x1],0x22

mov DWORD PTR [rbp-0xc],0x33333333

mov DWORD PTR [rbp-0x8],0x44444444

mov DWORD PTR [rbp-0x20],0x55555555

mov DWORD PTR [rbp-0x1c],0x55555555

mov DWORD PTR [rbp-0x18],0x66666666

mov DWORD PTR [rbp-0x14],0x66666666

16

64- bit Data Types Ƶx86_64

Part 2: Load into registers and compute

mov rax,QWORDPTR [rbp-0x18] // 0x6666666666666666 in rax

mov rdx,QWORDPTR [rbp-0x20] // 0x7777777777777777in rdx

lea rcx,[rdx+rax*1] // rcx= rax+ rdx*1

mov eax,DWORDPTR [rbp-0x8] // 0x44444444in eax

mov edx,DWORDPTR [rbp-0xc] // 0x33333333in edx

add edx,eax // edx= edx+ eax

movsx esi,BYTEPTR [rbp-0x2] // 0x11in esi

movsx eax,BYTEPTR [rbp-0x1] // 0x22in eax

add esi,eax // esi= esi+ eax

17

64- bit Data Types Ƶx86

No 64-bit registers L

long long five = 0x5555555555555555; // sizeof(long long) == 8

long longsix = 0x6666666666666666;

,ÅÔȭÓ ÍÁËÅ ÉÔ ×ÏÒË ×ÉÔÈ ΩΨ-bit ones!

18

64- bit Data Types Ƶx86

Part 1: Move values onto the stack (same as x86_64)

mov BYTE PTR [ebp-1],0x11

mov BYTE PTR [ebp-2],0x22

mov DWORD PTR [ebp-8],0x33333333

mov DWORD PTR [ebp-12],0x44444444

mov DWORD PTR [ebp-24],0x55555555

mov DWORD PTR [ebp-20],0x55555555

mov DWORD PTR [ebp-32],0x66666666

mov DWORD PTR [ebp-28],0x66666666

19

64- bit Data Types Ƶx86

Part 2: Load into registers and compute

mov eax,DWORDPTR [ebp-32] // 0x66666666 in eax

mov edx,DWORDPTR [ebp-28] // 0x66666666 in edx

add eax,DWORDPTR [ebp-24] // eax= eax+ 0x55555555

adc edx,DWORDPTR [ebp-20] // edx= edx+ 0x55555555+ CF

ȣ

mov eax,DWORDPTR [ebp-12] // 0x444444in eax

add eax,DWORDPTR [ebp-8] // eax= eax+ 0x33333333

ȣ

movsx edx,BYTEPTR [ebp-1] // 0x11in edx

movsx eax,BYTEPTR [ebp-2] // 0x22in eax

lea eax,[edx+eax] // eax= edx+ eax*

20

Questions

21

Technical Walkthrough

ÁOriginal CodebreakerChallenge
ĞReleased during Fall 2013
ĞReverse-engineering / crypt challenge
ÀProgram prompted for a password
ÀAES key is derived from SHA256 hash of password
ÀAES-encrypted blob w/ instructions for how to submit the

solution stored in the executable
ÀTo verify the correct password was entered, the derived key is

used to compute an HMAC of the encrypted blob
ÀIf HMAC is correct, the blob is decrypted, revealing

instructions.
ÀWeakness of the design is in the key-derivation function
ÍOnly first 2-bytes of SHA256 hash matter
ÍEasy to brute force

22

Running the program

23

Running the program (2)

24

Disassemble

ÁDisassemble the Codebreakerbinary

ĞIf asked whether you want to use Proximity View

ÀClick no

ÀUse graph view

25

Disassemble (2)

26

Disassemble (3)

27

Observe Strings

ÁObserve the strings that show up in IDA

ĞClick Views->Open Subviews->Strings

ĞYou should see the strings that are displayed when
you run the program

Welcome to the NSA Codebreaker Challenge!

[ƻŀŘƛƴƎΧΧ

To win the challenge, you must be the first to decrypt the code
protected by the password. You are free to use any means at your
disposal to reverse-engineer and/or modify this binary in order to discover
ǘƘŜ ŜƴŎǊȅǇǘƛƻƴ ƪŜȅΦ LƴǎǘǊǳŎǘƛƻƴǎ ŦƻǊ ǎǳōƳƛǘǘƛƴƎ ȅƻǳ ǎƻƭǳǘƛƻƴ ǿƛƭƭ ōŜ ΨǊŜǾŜŀƭŜŘΩ
ǿƘŜƴ ȅƻǳ ŀǊŜ ǎǳŎŎŜǎǎŦǳƭΧƎƻƻŘ ƭǳŎƪΗ

Enter Password:

28

Observe Strings (2)

29

Observe Strings (3)

30

ACCESS DENIED

Á$ÏÕÂÌÅ ÃÌÉÃË ÏÎ ÔÈÅ Ȱ!##%33 $%.)%$\Îȱ
string

ĞThis takes you to the data section of the binary
where the string is stored

ÁTo the right of the string are cross references
to this address (show up as DATA XREF in
IDA)

ÁPress ctrl-x to pull up a cross-references
window; you will see two different references

31

ACCESS DENIED (2)

32

ACCESS DENIED (3)

33

Double- click Reference

ÁYou should now be looking at disassembled
x86 code

ĞWe just leveraged the fact that in order to print
the ACCESS DENIED message to the screen, the
code had to reference the address in the data
section of the program where the string was
stored.

ÁUsing xrefs in IDA is a quick and easy way to
find interesting code sections

34

Double- click Reference (2)

35

Explore Code Block

ÁExplore the code block preceding the access
denied message (note: you can double-click call statements to visit the function body)

ÁYou will see routines to:

Ğprint the initial welcome screen,

Ğprompt the user for the password and

Ğcompute the password length

Á4ÈÅ ÂÒÁÎÃÈ ÆÏÒ Ȱ!##%33 $%.)%$ȱ ÉÓ ÔÁËÅÎ
when the strlen of the password is 0.

36

Explore Code Block (2)

37

Explore Code Block (3)

38

Explore Code Block (4)

39

