REVERSE ENGINEERING
MACHINE CODE: PART 2

Advanced Breakpointing

= Software Breakpoints
Vg

= Memory Breakpoints
Page guarding

* Hardware Breakpoints
CPU hardware

Software Breakpoints

= Software Breakpoints
A software breakpoint is an interrupt (ox3)

Generates a debug event of
EXCEPTION DEBUG EVENT forthe debugger

Software Breakpoints

= Setting a Breakpoint
To set a breakpoint at address A, in process
memory:
Record the byte value at A,
Set the byte value at A, to oxCC
What is oxCC again???

= Clearing a Breakpoint

To clear a breakpoint at address A, in process
memory:

Restore the byte value at A,

Memory Breakpoints

= Problems

Software interrupts change memory values

Suspicious breakpoint

' ,' You want to place breakpoint outside the code section. INT3 breakpoint
' set on data will not execute and may have disastrous influence on the
debugged program. Do you really want to set breakpoint here?

Note: you can permanently disable this warning in Options | Security.

Memory Breakpoints

= Breaking on Read/Write/Execute

We can set a page of memory with
VirtualProtect () and PAGE GUARD

When guarded memory is accessed, a
STATUS GUARD PAGE VIOLATION exception
is generated

Set memory breakpoint at 0012FF9C..0012FFOF

Break on:

|v Read access
v ‘Wirite access

[Execution

| Disabled

S P

Hardware Breakpoints

* Processor-handled Breakpointing
HW breakpoints are not interrupt instructions
Special hardware dedicated to breakpoints
Special "debug registers” interact with CPU

Hardware Breakpoints

= x86 Debug Registers
DRo-DR3: linear breakpoint addresses
Up to 4 hardware breakpoints max
DR4-DRg: reserved
DR6: debug status
4 bits (0,1,2,3) which are set upon an interrupt
Bits must be unset by debug exception handler
DR7: debug control
Local/global breakpoint enables (o,2,4,6/1,3,5,7)

R/W/X breakpoint trigger option
(16,17/20,21/24,25/28,29)

1,2,8,4 byte breakpoint trigger area
(18,19/22,23/26,27/30,31)

Hardware Breakpoints

= x86 Debug Registers

Hardware breakpoint at vuln_server.<ModuleEntryPoint>

Break on: Data size: Hardware slot:
(¢ Execution (v (¢ 1 |Empty
(" Access [R2W) i (" 2 |Empty
{7 Write i (" 3 |Empty

(" 4 |Empty
| Disabled

OK

Cancel

C++ Reverse Engineering

= Differences from C
Indirect calls
Via vtables
Virtual functions
Function that can be overridden by inheriting object

The this pointer
Object oriented programming

C++ Reverse Engineering

class Foo : Bar {

public:
Foo(); // constructor
~Foo(): // destructor
int doFoo() ;

private:
int doMoreFoo () ;
int x;

int y;

C++ vtables

= Virtual Functions
Can be overriden in inheriting classes
What is printed?

class A {

public:
virtual void func() {cout << “A”;}
};
class B: public A {
public:
void func() {cout << “B”;}

B *b = new B();
b->func|() ;

C++ vtables

= Virtual Method Table (vtable)

Array of pointers to the functions of an object
vpointer points to the vtable

First member of the object for MS compilers
After all user-declared members for Unix compilers

= Indirect call

mov eax, [edi] // vtable

mov ecx, edi // this ptr
call dword ptr[eax+4h] // vtable method

C++ vtables

class Bl {

public:
void £0() {}
virtual void £f1() {}
int int_in;bl;

};

class B2 {
public:
virtual void £2() {}

int int_in;bZ;

};

C++ vtables

B2 *b2 = new B2();

// b2:

// +0: pointer to vtable of B2
// +4: value of int in b2

// vtable of B2:
// +0: B2::£2()

C++ vtables

class D : public Bl, public B2 {
public:

void d() {}

void £2() {} // override B2::£f2()

int int in d;

};

C++ vtables

D *d = new D();

// d:

// +0: pointer to vtable of D (for Bl)
// +4: value of int in bl

// +8: pointer to vtable of D (for B2)
// +12: value of int in b2

// +16: value of int in d

vtable of D (for Bl):
+0: Bl::f1() // Bl::f1() is not overridden

vtable of D (for B2):
+0: D::£2() // B2::£f2() is overridden by D::£f2()

int main(int argc char **argv) {
Bl =bl r B1():
B2 =b2 r B2()
D »=d new D();

void f0() {cout << "Bl.f0~\n":}
virtual woid £1{) {cout << "Bl.flxn": @}
int int_in_bl;

}:

clas=s B2 {

public:
virtual wvoid £2() {cout << "B2.f2~n";}
int int_in_b2;

¥

clas= D : public Bl, public B2 {
public:
void d{) {cout << "D.d\n":}
void £2{) {cout << "D.f2\n":}
int int_in_d;

}:

bl->£f0();
bl->f1();
bl->int_in_bl

1}
[

b2->£2():
b2->int_in_b?2

d—>d{);
d->£2();
d->int_in_d

]
(8]

return 0;

#3481 1BF vtables [Hlways CALL vtables.operator new
A848110A| vtables |Always CALL vtables.B88481837
190401200 vtables |Alwavs CALL vtables.operator new
Aa4a121B| vtables |Always CALL vtables.B8848185A
A8481241 | vtables |Always CALL vtables.operator new
Aa4A125C | vtables |Always CALL vtables.B88481673
8401233 vtables |Always CALL vtables.B88481023
8401292 vtables |Always CALL DWORD PTR DS:[EDX]
A84A129E | vtables |Always MOY DWORD PTR DS:[ERX+41]1,1
A84812AF | vtables |Always CALL DWORD PTR DS:[CEDX]
A840812BEB| vtables |Always MOU DWORD PTR DS:[ERX+41],2
Aa4012C5 | vtables |Always CALL vtables.B88481869
8840812028 vtables |Always CALL DWORD PTR DS:[ERX]
A84012E4 | vtables |Always MOY DWORD PTR DS:[ECX+18],3

C++ vtables

= Ba Constructor
Initializes vtable for this object

class Bl {
public:
void f0() {cout << "Bl.f0Nn":;}

PUSH EBP

. 2BEC MOU EBP,ESP virtual woid f1() {cout << "Bl.fl1>n":@ }
. S3EC 44 SUB ESP, 44 int int_in bl:

. 53 PUSH EBX ¥

. 56 PUSH ESI

. 57 PUSH EDI

. 51 PUSH ECX

. 8070 BC LER EDI,DWORD PTR S5: [EBP-441]

. B9 11866868 MOV ECX,11
. B8 CCCCCCCC | MOV ERX,CCCCCCCC

. F2:AB REP STOS DWORD PTR ES:[EDI]
. 59 POP ECX

. 894D FC MOU DWORD PTR SS:[EBP-41,ECX
. 8B4S FC MOV ERX,DWORD PTR SS:[EBP-4]
. C788 2CFa4z64a| MOV DWORD PTR DS:[ERAX],OFFSET vtables.Bl::'vftable’
. 8B4S FC MOV ERX,DWORD PTR SS:[EBP-41]
. SF POP EDI

. SE POP ESI

. SB FPOP EBX

. SBES MOV ESP,EBFP

. SD FPOFP EBP

FIL o3 RETN

ES 9BFDFFFF |CALL vtables.B8481023

'ﬂﬁf;m'{ Ba4a1288| . 8B45 FO MOU ERX,DWORD PTR SS:[EBP-18]
N 9a40128E| . 8B10 MOU EDX,DWORD PTR DS:[EAX]
virtual void £1() {cout << "Bl.fln": }
int int_in_bil: aadalzeF| . 8B4D Fa MOV ECX,DWORD PTR SS: [EBP-181]
e « FF12 CALL DWORD PTR DS:[EDX]
cl§T$ B2 {
public:
virtual void £2() {cout << "B2.f2n":} pR4R1298| . 8B4S FO MOU ERX,DWORD PTR SS:[EBP-18]

int int_in_b2;

. . Cr48 B4 916681 MOU DWORD PTR DS:CEAX+41, 1
| | AR4A12A5| . SB4D EC MOU ECX,DWORD PTR SS:[EBP-141
Cabli. | Public Bl public B2 { 6e4812A2| . 8B11 MOU EDX,DWORD PTR DS:[ECK]
void d{) {cou "D.d\n";}
void £2() foout << "D.f2\at:} an4m120c] . SB4D EC MOU ECX,DWORD PTR SS:[EEP-14]
, int int_ind: . FF12 CALL DWORD PTR DS:CEDX]
bl->£0(): aa4a12688| . 8B4S EC MOU EAX,DWORD PTR SS:C[EEBP-141
b1 1) BB - 18 i ootz RIS P2
. . - . Had4a12C2 - ’ H -
bl->int_in bl = 1; . ES 9FFOFFFF |CALL wtables.B0401069

BB4612CA 8B40 ES MOU ECX,DWORD PTR SS:[EBP-181
b2->£2(): Ba4a12Cco 83C1 @8 ADD ECX, 8
. : Gga4a1208| . SBSS ES MOU EDX,DWORD PTR SS:[EBP-181
b2->»int_1in_ b2 = Ga4@1202| . SB42 88 MOU EAX,DWORD PTR DS:[EDX+2]
. FF1@ CALL DWORD PTR DS:[EAX]
d—>d () : |
d->£2(). pA4a12E1 8B40 ES MOU EC¥,DWORD PTR SS:[EBP-18]

d->int_1in d =

. C741 18 838681 MOV DWORD PTR DS: [(ECK+181,3

Symbols

= Debug Symbols
Attaches names to variables and methods
May be compiled into the binary
May be distributed in a separate file
May be destroyed upon compilation/linking
Most debuggers have support for symbols

Name Mangling

= Name Mangling
Compiler symbols for
Functions
Structures
Classes

Used to distinguish identifiers of the same name
in different namespaces

Used by the compiler for function overloading

Name Mangling

= Name Mangling (in C)
Fairly standardized
Not useful in C since function overloading is not allowed

int cdecl f (int x) { return 0; }
int stdcall g (int y) { return 0; }
int fastcall h (int z) { return 0; }

Mangled names
f

_9@4
@h@4

Name Mangling

Name Mangling (in C++)
Highly used, most non-standardized

int £ (void) { return 1; }
int £ (int) { return O0; }
void g (void) { int 1 = £(), jJ = £(0);

Mangled names
_fv
_fi

9.V

| Name Mangling

Compiler Vo i] void h (int, char) void h(void)
Intel C++ 8.0 for Linux
HP aC++ A_05.55 |A-64
GNU GCC 3.x and 4 x
HP aC++ A 03.45 PA-RISC
GNU GCC 2.9x
Microsoft VC++ v6/v7

Digital Mars C++

Borland C++ v3.1
OpenVMS C++ V6.5 (ARM mode)

OpenVMS C++ V6.5 (ANSI mode) CXX G51T |CXX FIC26CDH77

OpenVMS C++ X7
SunPro CC
Trub4 C++ V6.5 (ARM mode)

Trub4 C++ V6.5 (ANSI mode)

Name Demangling

= Name Demangling
Good disassemblers support name demangling
Allows you to guess function types

Commands | Disasm ‘ CPU ‘ R
Secuity | Debug | Events | Exceptions | Trace | SFX tings ~ Addresses

I”" Demangle symbolic names
[V Prepend ordinals to IMPLIB names

Display address in form of:
" HEX, Symbol
" Symbol, HEX
" Either HEX or Symbol

I™" Show name of local module

I Highlight symbolic names

By default, sort contents of Names window by:
Address

* Name

| Analysing notepad: 77 heuristical procedures, 516 calls to known, 151 calls to guessed functions

Windows Internals

= Process/Thread Information
PEB
TEB

= Exception Handling
VEH
SEH
UEF

Process Environment Block

(PEB)
= PEB
Pointer to the PEB located at fs:[0x30]

Not entirely documented
Contains informative information

Initialized by kernel or PE header
Contains runtime information

BeingDebugged

Ldr

= Loaded modules

ProcessParameters

* Information like command line arguments

Thread Environment

Block (TEB)

= TEB

Also called Thread Information Block (TIB)
Located at fs:[oxo0]

Contains information about a single thread
Current SEH frame (fs:[oxo])
Linear address of the TIB (fs:[oxa18])
Process ID (fs:[ox20])
Thread ID (fs:[ox24])
Pointer to the process PEB (fs:[0x30])

Thread Contexts

= Context

The state of a thread’s execution

Essentially all registers
* GP registers

* Memory segment registers
- EIP

One context per thread

Windows Exception Handling

1. Vectored Exception Handler (VEH)
2. Structured Exception Handler (SEH) Chain
3. Unhandled Exception Filter (UEF)

Vectored Exception Handler

= VEH
New feature starting in Windows XP
Chain of pointers to exception handlers
Chain is located on the heap as a linked list

When an exception occurs, the VEH chain is
traversed for an appropriate handler
VEHSs are not frame based

Unlike SEHs, VEHs may be triggered from anywhere
in the process

Vectored exception handling occurs before any
frame-based handlers (like SEH)

Structured Exception Handler

» SEH Chain
Chain of pointers to exception handlers
Chain is located on the stack as a linked list

try/catch(or try/ except)blocksinstall
these handlers in the chain

When an exception occurs, the SEH chain is
traversed for an appropriate handler

Unhandled Exception Filter

= UEF

“Last ditch effort” exception handler
Can be altered externally (through Win32 API)
This is how just-in-time-debugging is implemented

L' test.exe

stack_overflow.exe

stack_overflow.exe has encountered a problem and B !| testexe has StOpped WOl'ki.'Wg
needs to close. We are sornry for the inconvenience.

Windows can check online for a solution to the problem.

If you were in the middle of something, the information you were working on

might be lost. 2 Check online for a solution and close the program

Please tell Microsoft about this problem.

We have created an error report that you can send to us. We will treat
this report as confidential and anonymous.

2 Close the program

< Debug the program
To see what data this error report contains, click here.

Debug Send Error Report

v) View problem details

Questions/Comments?

